Let J = ∩ i m i {\displaystyle J=\cap _{i}m_{i}} be the (irredundant) primary decomposition of J {\displaystyle J} . We associate to the pair ( J , ω ) {\displaystyle (J,\omega )} the element ∑ i ( m i , ω i ) ∈ G {\displaystyle \textstyle \sum _{i}(m_{i},\omega _{i})\in G} , where ω i {\displaystyle \omega _{i}} is the equivalence class of surjections from L / m i L ⊕ ( A / m i ) n − 1 {\displaystyle L/m_{i}L\oplus (A/m_{i})^{n-1}} to m i / m i 2 {\displaystyle m_{i}/m_{i}^{2}} induced by ω {\displaystyle \omega } .
1999, M. Pavaman Murthy, “A survey of obstruction theory for projective modules of top rank”, in Tsit-Yuen Lam, Andy R. Magid, editors, Algebra, K-theory, Groups, and Education: On the Occasion of Hyman Bass's 65th Birthday, American Mathematical Society, page 168